
Functional Programming:
More than just a coding

style

Matthew Watt
Software Engineer

• Functional programming is amazing
• F# is amazing – you should learn and use it

...are you convinced?

Full disclosure

• Functional programming is awful and full of scary
math and symbols. You should definitely never
learn it, it won’t help you be a better programmer

• F# is awful, it’s offensive to musicians
everywhere, it’s built on Microsoft Java which is
basically also awful and you should also never use
it, you’d have more fun writing assembly

...now we’re getting somewhere

Reverse psychology!

• 29 years old
• Missing fingers since birth
• Married
• (Technically) professional trombone player
• Novice pickleball player
• Enjoyer of:

• Scotch
• Bourbon
• Beer
• Cigars

• Cat owner

About me

Obligatory cat pics

Obligatory cat pics

My journey
• 8 years in industry

My “aha!” moment

cool new branding!

Cult affiliation disclaimer

Denominational^

Two denominations

Dynamic typing Static typing

• Standard ML
• F#
• OCaml
• Haskell

• Common Lisp
• Clojure
• Scheme
• Racket

Flexibility

Why choose one over the other?

Dynamic typing Static typing

Correct by construction

A case study: the Galileo Jupiter Orbiter

“Also in 1993 I used MCL to help generate a code patch for the
Gallileo magnetometer. The magnetometer had an RCA1802 processor,
2k each of RAM and ROM, and was programmed in Forth using a
development system that ran on a long-since-decommissioned Apple
II. The instrument had developed a bad memory byte right in the
middle of the code. The code needed to be patched to not use this
bad byte. The magnetometer team had originally estimated that
resurrecting the development environment and generating the code
patch would take so long that they were not even going to attempt
it. Using Lisp I wrote from scratch a Forth development environment
for the instrument (including a simulator for the hardware) and
used it to generate the patch. The whole project took just under 3
months of part-time work.” - Lisping at JPL, Ron Garret

A case study: Deep Space I

“The Remote Agent software, running on a custom port of
Harlequin Common Lisp, flew aboard Deep Space 1 (DS1), the
first mission of NASA's New Millennium program. Remote Agent
controlled DS1 for two days in May of 1999. During that time
we were able to debug and fix a race condition that had not
shown up during ground testing. (Debugging a program running
on a $100M piece of hardware that is 100 million miles away
is an interesting experience. Having a read-eval-print loop
running on the spacecraft proved invaluable in finding and
fixing the problem. The story of the Remote Agent bug is an
interesting one in and of itself.)” – Lisping at JPL, Ron
Garret

Flexibility

Why choose one over the other?

Dynamic typing Static typing

Correct by construction

“If it builds, it works”

A case study: Cardano blockchain

• Written in Haskell

• Used for:
• Decentralized finance (DeFi)
• Digital identity management
• Supply chain management
• Data storage

• Voting systems
• Healthcare

A case study:

• My current side project!

• Backend API
• Web app

• Mobile app

Two denominations

Dynamic typing Static typing

Two denominations

Key Concept #1

Immutability is the
foundational simplicity of

functional programming

Key Concept #1

Immutability is the
foundational simplicity of

functional programming

Key Concept #1: Immutability is simplicity

Immutable = Unable to be
changed without exception

Key Concept #1: Immutability is simplicity

A variable, once defined,
cannot change

Key Concept #1: Immutability is simplicity

A variable, once defined,
cannot change

value

Key Concept #1: Immutability is simplicity

A structure, once defined,
cannot change

Key Concept #1: Immutability is simplicity

An object , once defined,
cannot change

Key Concept #1: Immutability is simplicity

A list , once defined,
cannot change

Key Concept #1: Immutability is simplicity

A hashmap , once defined,
cannot change

Key Concept #1: Immutability is simplicity

A tree , once defined,
cannot change

Key Concept #1: Immutability is simplicity

A graph , once defined,
cannot change

Key Concept #1: Immutability is simplicity

A structure, once defined,
cannot change

Key Concept #1: Immutability is simplicity

Value-oriented programming

Key Concept #1: Immutability is simplicity

Immutability is the
foundational simplicity of

functional programming

Key Concept #1: Immutability is simplicity

Immutability is the
foundational simplicity of

functional programming

Key Concept #1: Immutability is simplicity

https://www.youtube.com/watch?v=SxdOUGdseq4

Key Concept #1: Immutability is simplicity

Simple Easy

Key Concept #1: Immutability is simplicity

Simple = one fold/braid

= not interleaved

Key Concept #1: Immutability is simplicity

Complex = braided/interleaved

Key Concept #1: Immutability is simplicity

Simple and complex are
objective notions

Key Concept #1: Immutability is simplicity

Easy = near, at hand

Key Concept #1: Immutability is simplicity

Easy and hard are subjective
notions

Key Concept #1: Immutability is simplicity

Easy = near, at hand

Key Concept #1: Immutability is simplicity

“If you want everything to be
familiar [easy], you will
never learn anything new,

because it can’t be
significantly different from
what you already know and not

drift away from the
familiarity” – Rich Hickey

Key Concept #1

Immutability is the
foundational simplicity of

functional programming

Key Concept #1

Mutability is complex?

Yes.

Key Concept #1: Immutability is simplicity

A value, once defined, cannot
change

Key Concept #1: Immutability is simplicity

What is a value that can
change?

A variable

Key Concept #1: Immutability is simplicity

What is a value that can
change over time?

A variable

Value and time are interleaved

Key Concept #1: Immutability is simplicity

What is another name for a
value that changes over time?

State

Key Concept #1: Immutability is simplicity

State is complex by definition
Invalid states? Data races?

Concurrency?

Asynchrony?

Threading?

Key Concept #1: Immutability is simplicity

Immutability is the
foundational simplicity of

functional programming

Key Concept #1: Immutability is simplicity

How do we write programs that
process data without mutating

it?

Key Concept #1: Immutability is simplicity

Functions!

string -> int

int -> string

Registration -> Result<Success, RegistrationError>

int -> int -> int

string -> Uri option

PaymentCard -> CardLast4

Key Concept #2

Avoid implicit behavior

Key Concept #2: Avoid implicit behavior

Functions!

string -> int

int -> string

Registration -> Result<Success, RegistrationError>

int -> int -> int

string -> Uri option

PaymentCard -> CardLast4

Key Concept #2: Avoid implicit behavior

Implicit behavior

Object mappers

IoC Containers

Made explicit

Explicit mapping

Direct injection

Key Concept #2: Avoid implicit behavior

Functions!

string -> int

int -> string

Registration -> Result<Success, RegistrationError>

int -> int -> int

string -> Uri option

PaymentCard -> CardLast4

Key Concept #2: Avoid implicit behavior

Functions should be total

Every input produces a valid
output

Key Concept #2: Avoid implicit behavior

parseInt

string -> int

Key Concept #2: Avoid implicit behavior

parseInt

string -> intPARTIAL

Key Concept #2: Avoid implicit behavior

parseInt

string -> int

What if this can’t be converted to
an int?

Key Concept #2: Avoid implicit behavior

Constrain input

IntegralString -> int

EmailGuaranteedToBeInDatabase -> Account

Extend output

string -> int option

EmailAddress -> Result<Account option, Error>

Key Concept #3

Model your domain with
composable types

Key Concept #3: Use composable types

Composable types = non-scary,
non-mathy way of saying
“algebraic data types”

Key Concept #3: Use composable types

Only two kinds

You already use them

Key Concept #3: Use composable types

AND types

Classes, structs, records,
tuples

Aggregates

CreditCard = Name AND Last4
AND ExpirationDate

OR types

enums, unions

Choices

Brand = Visa OR Mast OR
Disc OR Amex

Key Concept #3: Use composable types

type Option<T> =
 | None
 | Some of T

type Result<Ok, Error> =
 | Ok of Ok
 | Error of Error

They are OR types!

Key Concept #4

Make invalid states
unrepresentable

Key Concept #4: No invalid states

type PaymentCardInfo =
 { CardholderName : string
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Probably shouldn’t be empty

Key Concept #4: No invalid states

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Probably should be a fixed set of
choices

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : CardBrand
 CardLast4 : string
 CardExpiration : string }

Key Concept #4: No invalid states
type CardBrand =
 | Visa
 | MasterCard
 | Discover
 | AmericanExpress

Probably should only allow 0000-
9999

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : CardBrand
 CardLast4 : CardLast4
 CardExpiration : string }

Key Concept #4: No invalid states
type CardBrand =
 | Visa
 | MasterCard
 | Discover
 | AmericanExpress

Probably should only allow
“MM/YY”

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : CardBrand
 CardLast4 : CardLast4
 CardExpiration : CardExpiration }

Key Concept #4: No invalid states
type CardBrand =
 | Visa
 | MasterCard
 | Discover
 | AmericanExpress

type CardExpiration = private CardExpiration of string

module CardExpiration =
 let create str = validation { ... }

type PaymentCardInfo =
 { CardholderName : string
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Key Concept #4: No invalid states

How many possible values?

type PaymentCardInfo =
 { CardholderName : string
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Key Concept #4: No invalid states

How many possible values?

How many possible values?

type PaymentCardInfo =
 { CardholderName : string
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Key Concept #4: No invalid states

How many possible values?

How many possible values?

Frighteningly many

of PaymentCardInfo values =
 Frighteningly many * Frighteningly many * Frighteningly many * Frighteningly many

type PaymentCardInfo =
 { CardholderName : string
 CardBrand : string
 CardLast4 : string
 CardExpiration : string }

Key Concept #4: No invalid states

How many possible values?

How many possible values?

How many of those possible
values are valid?

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : CardBrand
 CardLast4 : CardLast4
 CardExpiration : CardExpiration }

Key Concept #4: No invalid states

How many possible
values?

type PaymentCardInfo =
 { CardholderName : NonEmptyString
 CardBrand : CardBrand
 CardLast4 : CardLast4
 CardExpiration : CardExpiration }

Key Concept #4: No invalid states

How many possible
values?

Still a lot. But orders of
magnitude fewer.

[Slide intentionally blank. Take a breather, you’ve earned it]

Things functional
programmers avoid

Social interaction

Popularity Side-effects

State

Dynamic types

Complexity

Come at me, Lispers

Invalid states

Things functional
programmers avoid

Social interaction

Popularity

Things necessary for
useful programs

Side-effects

State

Dynamic types

Complexity

Come at me, Lispers

Invalid states

Simplicity

Caffeine

Flexibility

Composability

Static types

Things functional
programmers avoid

Social interaction

Popularity

Things necessary for
useful programs

Side-effects

State

Dynamic types

Complexity

Come at me, Lispers

Invalid states

Simplicity

Caffeine

Flexibility

Composability

Static types

Unfortunate and unavoidable

All programs are impure...

program

All programs are impure...at the boundary

program
input output

Key Concept #5

Functional core, imperative shell

Key Concept #5: Keep I/O at the edge

Use case (workflow, endpoint, process, feature)

1. Fetch what you need to make a decision

2. Make the decision

3. Act based on the decision

Demo time

Questions?

matt@twopoint.dev

https://twopoint.dev/posts/why-the-fsharp-would-i-
write-real-code-like-this

twopoint

	Slide 1: Functional Programming: More than just a coding style
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: My journey
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

